Evauating Changes in Cognitive Processing During Skill Development: A Structural
Equation Modeling Approach

David J. Law

Tennessee Department of Health

Paper Presented at the Annual Meeting of the American Educational Research Association
Seattle, Washington
April 13, 2001

Address: Cordell Hull Building, 6™ Floor
425 5" Avenue North
Nashville, TN 37247
dlawv@mail .state.tn.us|



mailto:dlaw@mail.state.tn.us

Abstract

A latent growth curve analysis evaluating the dynamics of cognitive processing in
developing skill is presented as an example of a methodological approach that combines
structural equation modeling and change for the purpose of evaluating cognitive theory.
Theory-based predictions of the relationships of working memory capacity and
procedural memory speed with developing skill were tested in a series of latent growth
curve analyses. Overall, results supported theoretical accounts of working memory as a
major determinant of early performance in complex tasks, with a diminished working
memory contribution and an increased procedural memory contribution following
consistent practice. Confirmatory factor analyses of performance in verbal and
visuospatial working memory tasks supported a domain-based correlated two-factor
structure. Latent growth curve analyses of repetition priming showed that repetition
priming is a multi-episodic process that takes the form of alog-log linear function, which
was consistent with the hypothesis that repetition priming is isomorphic with the
procedural memory processes underlying skill. Factor scores generated from these
analyses were then used as indicators of working memory capacity and procedural
memory speed in order to predict skilled performance. Skill development was measured
as performance in a computer-based instructional environment that taught participants to
compute the outputs of digital logic gate circuits. Baseline latent growth models showed
that learning in the logic gate task took the form of a power function and that the levels of
heterogeneity in performance levels and learning rates warranted attempts to create
predictor models using the working and procedural memory indicators. The final
predictor models showed that both working memory capacity and procedural memory
speed affected learning rates. Furthermore, initial working memory contributions to
performance were large while initial procedura memory contributions were small, and
these relationships were reversed in later trials. Although the initial working memory
factor analyses showed a two-factor solution, the portion of working memory variance
predicting learning was the common variance among the two factors. Altogether, the
results are consistent with theoretical accounts of working memory, procedura memory,
and skill, and of the use of repetition priming levels as an indicator of procedural memory
speed. The results also support claims that the functional aspect of working memory is a
single general ability component. Finally, it is argued that the combination of strong
theoretical predictions of change and structural equation modeling techniques for
assessing change provides a powerful methodology for evaluating contemporary
cognitive theories.



Assessing growth or change and its mediating factors is central to many of the
important questions in contemporary educational research. Historically, the measurement
of change was so problematic that it caused leading researchers to question whether we
should even try (Cronbach & Furby, 1970). More recently, researchers have shown that
the combination of multiple waves of data (Willett, 1988, 1989) and multilevel modeling
techniques, such as hierarchical linear models (Bryk & Raudenbush, 1992) and latent
growth curve models (Chou, Bentler, & Pentz, 1998; McCardle & Epstein, 1987; Willett
& Sayer, 1994), is adequate for modeling both interindividual and intraindividual change.
Accordingly, these methods are increasingly represented in educational research.
However, most research using these methods has focused on macro-level units of
analyses such as demographic groups, classrooms, and school systems over extended
periods of time. In contrast, the present study presents a micro-level analysis of the
dynamic performance-ability relationships that occur during cognitive skill acquisition. In
many respects, this research is similar to cognitive correlates and cognitive components
approaches, which were popular in the 70's and 80's (see, Pellegrino & Glaser, 1979), but
with an updated methodology focused on change. The primary purpose of this paper isto
show the utility of such an approach rather than reporting the substantive results, which
are reported elsewhere (Law, 2000).

Background

The study used latent growth curve models to evaluate the changing rel ationships
of working memory capacity and procedural memory speed with performance in a
complex cognitive task. Latent growth curve analyses were also used to evaluate the
validity of repetition priming as an indicator of procedural memory speed. This required
astrong a priori model of skill learning and individual differences. The model combined
significant aspects of Anderson’s (1983, 1993) ACT-R, Logan's (1988) instance-learning,
Ackerman's (1987, 1988) cognitive/psychometric, and Cohen's (1984, Cohen & Squire,
1980; Poldrack, Selco, Field, & Cohen, 1999) procedural memory/repetition priming
models. In brief, initial performance in complex tasks is attention demanding and heavily
dependent upon working memory capacity; and with practice, performance of the
consistent task components becomes increasingly automatic - the product of a capacity-
free procedural memory system. Accordingly, it was hypothesized that individua
differences in the constructs representing working memory capacity and procedural
memory speed will show systematicaly decreasing and increasing relationships with
skilled performance over the course of its development. To test these hypotheses it was
necessary to develop an individual differences marker for procedural memory.

Cohen and Squire (1980) were the first to suggest that the processes underlying
repetition priming and procedura memory are one and the same. However, many
researchers have come to accept as fact, findings that repetition priming is a single-
episode phenomenon (e.g., Schacter, Cooper, Delaney, Peterson, & Tharan, 1991). If
true, repetition priming could not underlie the gradual multi-episode process of skill
learning. A major contention of this paper is that the two-to three-wave mean difference
analyses of change, which were used in these studies, are insufficient to test the
hypothesis of gradual change, and that multi-wave growth curve analyses provide a more
appropriate test.



M ethods and Procedures

Participants were 120 volunteers, a small but adequate number to test the
proposed models. They were solicited from the Vanderbilt University community and
paid $35 for their efforts, which required them to attend sessions on four consecutive
days. The first and second sessions involved participating in separate verba and
visuospatial working memory and repetition priming tasks. On the third day participants
were randomly assigned to either part or whole training conditions in computing digital
logic gates. In the final session, all participants computed three-gate digital logic circuits
under conditions identical to the whole-training condition. This paper reports on the
results from the first three sessions.

Working memory was assessed using tasks that required the concurrent
processing and storage of information (e.g., Baddeley, 1986). Repetition priming was
assessed using alexical decision task and a symmetry decision task (for details see, Law,
2000). Repetition priming is the phenomenon such that processing of a stimulus is
enhanced in presentations following the initia presentation of a stimulus. The
enhancement is shown by increased accuracy and decreased latency of processing in
subsequent presentations. The repetition priming hypotheses evaluated in the study were
whether the priming effect continues to increase with subsequent priming episodes, and if
so if priming takes the form of a power or alog-log linear function, the form commonly
taken by developing skill (e.g., Newell & Rosenbloom, 1981). A positive finding for both
of these hypotheses was a prerequisite for using repetition priming as an indicator of
procedural memory speed in the cognitive skill development models.

Cognitive skill development was assessed by monitoring participants
performance as they learned to compute the output of digital logic gates, either as single-
gates or three-gate circuits. Examples of the single-gate and three-gate stimuli are
presented in Figure 1. The single gate example is an OR gate and the circuit exampleis a
NAND gate and an XOR gate feeding into an NXOR gate. Digital logic gates process
digital input, zeros and ones, compute a logical function, and produce digital output
dependent upon their input and function. Thus, participants were required to learn the
logic functions associated with each of six different gate types, match the functions to
their schematic representations, and compute their outputs for various sets of inputs.
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Figure 1. Single- and multiple-gate digital logic stimuli.



All of the tasks were computer-administered. Span length and the accuracy of
concurrent processing were recorded in the working memory tasks, and accuracy and
latency in milliseconds were recorded in the repetition priming and logic-gate training
tasks. The primary measures of interest were span length in the working memory tasks
and latency in the repetition priming and logic-gate training tasks. However, using these
data, span length and latency, in the modeling procedures required that the corresponding
accuracy levels were high and there were no systematic differences between the two
training groups. These conditions were met and the anal yses proceeded.

Results and Discussion

The working memory span-length data were evaluated using a series of aternate
confirmatory factor models. Ultimately, only a correlated two-factor solution with factors
representing the verbal and visuospatiad domains fully accounted for the data.
Accordingly, factor scores were derived from the correlated two-factor solution and used
as predictors in the skill learning growth curve models.

Before proceeding to the latent growth curve models it is worthwhile to look at
individual growth and consider how it was assessed in the priming tasks. The models
were assessed in alog-log space; that is, log latency was modeled in terms of log episode.
This was done with the expectation of priming taking the form of a log-log linear
function, which is an alternate form of a power function. Figure 2 shows the individual
log-log linear least-squares trajectories for twelve randomly selected participants in the
verba priming task (left panel) and visuospatial priming task (right panel). Inspecting
Figure 2, it is apparent that there was considerable variation in the individual functions.
On average the intercepts and slopes were larger in the visuospatial condition than in the
verbal condition. There was also greater heterogeneity among the intercepts and slopesin
the visuospatial condition. These observations suggest the participants were more aike
and more facile in dealing with verbal stimuli than visuospatial stimuli. Taken in context
these findings seem reasonable; that is, given the participants were from a college
educated population and the stimuli in the lexical decision task were common five-letter
words, while the stimuli in the symmetry decision task were irregular polygons created
specifically for this study.
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Figure 2. Individual log-log linear functions describing verbal (left panel) and
visuospatial (right panel) priming for 12 randomly selected participants.



Growth-Curve Factor Structures. The factor structure presented in Figure 3
represents a five-episode latent growth model. In the model there are five observed
variables, T1 through T5, which represent five consecutive priming episodes measured in
log units. There are also two latent variables, INT and SLP, connected to the observed
variables via factor loadings. The latent variables represent the true intercept and true
slope for the population function describing change, and it is the means and variances of
these variables that are the parameters of primary interest in this model. Generally factor
loadings are variables and the estimated values are in large part the answer to the
questions posed by the modedl. In this case, however, the factor loadings are set to
constant values. Each of the INT factor loadings are set to 1 and the SLP factor loadings
are set to the log values of the linear constants 1 through 5. Combining these loadings
with log-unit observed data forces the model to estimate a five-episode log-log linear
function. The two-headed arrow between INT and SLP represents the covariance of the
true intercept and true slope. These are estimated as part of the modeling process. Finally,
the arrows below the observed variables represent error variances corresponding to their
measurement error. These too, are estimated as part of the modeling process.

Indicators of overall model-fit are then used to determine whether the observed
data are consistent with the hypothesized model. Given an adequate overall model-fit, the
parameter estimates can provide useful information for describing the process of change.
The mean estimates of true intercept and true slope describe the overall trgjectory of
growth in the population and the variance estimates indicate the degree of individual
differences in both the level of performance and the rate of growth. The covariance of the
true intercept and true slope indicates whether the level and rate of growth in the
population are correlated. Additionally, the error variances can be used to estimate the
reliability of measurement for both the observed variables and the overall rate of growth.
In the repetition priming analyses, factor scores representing the true intercepts and
slopes were generated from the latent growth curve functions. Subsequently, these scores
were used to predict the true intercept and true slope in the logic-gate training task
growth models.

Figure 3. Schematic representation of afive episode latent growth curve model.



Assessing Model-Fit. The distributions of all of the data modeled in the growth
curve analyses deviated from multivariate normal. This is not unusua for this type of
performance data. However, data that is not multivariate normal can cause problems in
the estimation and assessment of covariance structure models, such as the latent growth
curve models used in this study. Furthermore, the degree of difficulty encountered will
likely be proportional to the degree of deviation. Data that deviates from multivariate
normal, and especially kurtotic data, has been shown to cause increased chi-square
statistics and decreased goodness-of-fit indicators, both of which can cause the rejection
of a model that should be accepted (Hu, Bentler, & Kano, 1992; Hu & Bentler, 1995).
Multivariate kurtosis can aso cause standard error estimates for individual parameter
estimates to be biased (Chou & Bentler, 1995).

However, researchers have developed robust methods to deal with these
problems. The Satorra-Bentler Scaled X? statistic and the CFI goodness-of-fit index have
been shown to be robust to deviations from multivariate normality and to perform well in
small to moderate sized samples (Hu, et al. 1992; Chou & Bentler, 1995; West, Finch, &
Curran 1995). Robust standard error estimates have also been developed that provide
unbiased significance tests under nonnormality (Arminger & Schoenberg, 1989).
Accordingly, the overall growth curve models were assessed using the Satorra-Bentler
Scaled X? statistic in conjunction with the CFIl. Additionally, the statistical significance
of the individual parameter estimates was evaluated using robust standard errors. The
standardized root-mean square residual (SRMR), a chi-square statistic computed under an
assumption of normality, and the GFI goodness-of-fit index are aso provided with each
model for comparative and informational purposes. The standard X? and Scaled X2
statistics both assess the lack of fit due to model-based constraints. The CFI, an
incremental fit index, indexes the relative reduction in the lack of fit by the specified
model versus a baseline model, whereas the GFI, an absolute fit index, indexes the
relative amount of variances and covariances accounted for by the specified model.
Under nonnormality the standard X? is expected to be inflated and the GFI deflated
relative to their ‘true’ values. Finally, the SRMR estimates the average absolute value of
the discrepancy between observed and predicted correlations among the observed
variables.

Repetition Priming Models. The parameter estimates and model-fit statistics from
the latent growth curve analyses of visuospatial and verbal repetition priming are
presented in Table 1, the parameter estimates in rows 1 through 10 and the model-fit
statistics in rows 11 through 14. There are two latent growth curve models for
visuospatial priming. SPATIAL-1 is a five-episode log-log linear model assuming
homoscedastic error, and SPATIAL-2 assumes heteroscedastic error. Likewise there are
two five-episode verbal priming models, VERBAL-1, a homoscedastic model, and
VERBAL-2, a heteroscedastic model.

Looking at the model-fit statistics for the visuospatial models, SPATIAL-1
appears to provide an adequate description of the visuospatial priming data. Though the
Scaled X? for SPATIAL-1 was slightly large for its degrees of freedom, X? (14) = 28.89,
both of the goodness-of-fit indicators, GFI = .924 and CFl = .971, were larger than the
customary criterion of .90. Additionally, the standardized root mean-square residual,
SRMR = .055, was small relative to the magnitude of the correlations that were observed
among these variables. Altogether, this suggests that SPATIAL-1 adequately described



the changes in latency that occurred over the course of five visuospatia priming episodes.
Finaly, the chi-square difference test used to compare Models SPATIAL-1 and
SPATIAL-2, X? (4)= 5.57, p = .23, showed that allowing the error variances to vary did
not add to the overall model-fit anymore than would be expected to occur by chance.
Accordingly, SPATIAL-1 was the preferred model of repetition priming with
visuospatial stimuli.

Table 1 Repetition Priming: Log-log Linear Latent Growth Curve Models

Maximum Likelihood Estimates

Parameter SPATIAL-I  SPATIAL-2  VERBAL-1 __ VERBAL-2
1. Intercept Mean 6.6844** 6.6837%** 6.3922%** 6.3917%**
2. Slope Mean - 1172%%* -.1168%** -.0984%** -.0971***
3. Intercept Variance .0B19*** .0629*** L0299 ** .0287***
4. Slope Variance .0123%** 0135 ** .0060%** .0054%**
5. INT/SLP Covariance -.0162%** -.O172%** -.0100%** -.0092%**
6. Error 1 .0096*** .0063 .0040%** 0057**
7. Error 2 .0096*** .0093*** .0040%** .0054%**
8. Error 3 .0096%** 0121%** .0040%** .0038%**
9. Error 4 .0096*** .0069*** .0040%** .0035**
10. Error 5 .0096*** .0109*** .0040%** .0028**
11 (df) X2 (14) 30.10 (10) 23.99 (14) 53.45 (10) 45.18
12, Scaled X2 (14) 28.89 (10) 22.32 (14) 43.04 (10) 38.90
12. GFI 924 945 893 912

13. CFI 971 975 925 934

14. SRMR .055 053 .060 049

Note: **p <.01; ***p < .001; N=119; INT= Intercept; SLP = Slope.

All of the individua parameter estimates in SPATIAL-1 were statistically
significant (p's < .001). Entries in the first two rows of Table 1 are estimates of the
population means of true intercept, 6.684, SE = .0242, and true slope, -.1172, SE = .0124.
Together, these describe the trgjectory of change that was visuospatial repetition priming.
Entries in the third through fifth rows are the estimated population variances of the true
dlope and true intercept and their covariance, .0619, SE = .0078, .0123, SE = .0025, and
-.0162, SE = .0034, respectively. That the intercept and slope variances were statistically
significant shows that there was indeed interindividual heterogeneity in both the
participants’ initial status and rate of change. While thisis of interest in itself, it was also
an essentia precondition for the slope and intercept factor scores being used as predictors
of learning in the logic-gate training task. That the covariance of the slope and intercept
estimates was statistically significant shows that the participants’ initial status and rate of
change were related, r(117) = -.587, p < .001. Keeping in mind that the true slope was
negative, this indicates that the individuals who were initialy highest in log-latency (i.e.,
slowest) showed the greatest rate of change. Although this may be a simple artifact of
extreme scores and regression to the mean, it is aso consistent with an account such that



dower individuals have fewer relevant memory traces and are thus on an earlier and
faster declining portion of the learning curve.

Model-based reliability estimates for the five priming episodes ranged from, r =
.81 to r = .87. Thus, task performance was measured with a high degree of reliability.
Finaly, the estimated reliability of change in log-latency was remarkably high, r = .93,
that is, given the controversy that has often surrounded the measurement of change (e.g.,
Cronbach & Furby, 1970; Willett, 1988). Altogether this model shows that the decreasing
latency that is repetition priming is not a single episodic event. Rather, repetition priming
IS a sustained process that can continue over five or more episodes and in doing so takes
the form of a decreasing log-log linear function.

Turning to the verbal-priming models, the Scaled X? for VERBAL-1 was
somewhat large for its degrees of freedom, X? (14) = 43.04, as was the Scaled X for
VERBAL-2, X% (10) = 38.90. However, the CFl goodness-of-fit indicators for both
VERBAL-1 and VERBAL-2 were acceptable, CFI = .925 and CFl = .934. The SRMR
was aso relatively small for both models, SRMR = .060 and SRMR = .049. Given the
extreme kurtotic nature of these data, the CFl and SRMR values suggest both models
were acceptable. That the chi-square difference test was not statistically significant, X?
(4) =4.14, p= .39, indicates VERBAL-1 was preferred.

Asin the visuospatia priming model, al of the parameter estimatesin VERBAL-
1 were statistically significant (p's < .001). The true intercept, 6.392, SE =.0167, and true
slope, -.0984, SE = .0085, described a decreasing function with significant heterogeneity
in both initial performance level, .0299, SE = .0039, and rate of change, .0060, SE =
.0010. Also similar to visuospatia priming, the initial performance level and the rate of
change were correlated, r(117) = -.751, p < .001. Reliability estimates for the individual
episodes ranged from, r = .76 to r = .88, and the rate of change was measured with a
reliability of, r = .94. Altogether, the verbal and visuospatial priming results show that
repetition priming is a continuously decreasing process that spans five or more episodes.
Furthermore, the change that is priming can be measured with high degree of reliability
and takes the form of alog-log linear function. Accordingly, model-based factor scores
corresponding to the true intercept and true slope in the visuospatial and verbal priming
models were generated for each participant and used as predictors of performance in the
logic-gate training task.

Baseline Logic-Gate Models. The first step in assessing the individual growth
hypotheses was to create baseline growth models, evaluating both the form of the
learning curves and the degree of individual differences in the model parameters. As in
the priming models, the hypothesized form was log-log linear and the parameters of
interest were the population slopes and intercepts, which corresponded to the population
learning rates and performance levels, respectively. Though not as extreme as in the
priming data, the logic-gate data aso deviated from multivariate normality. Accordingly,
model-fit evaluations were based primarily on the Scaled X statistic, CFl, and SRMR.

Two baseline models were evaluated, one for the positive gates and one for the
negative gates, both with homoscedastic error structures. The parameter estimates and
model-fit statistics for the baseline models are presented in Table 2. The parameter
estimates are in rows 1 through 6 and the model-fit statistics in rows 7 through 10. The
apparent discrepancies between the standard minimum-fit and Scaled X? statistics and the
GFI and CFI indices reflect the deviation from multivariate normal. Regardless, the



Scaled X? statistics were small relative to their degrees of freedom, X? (38) = 47.54, and
X? (38) = 47.81, the CFl were large, CFl = .971 and CFI = .981, and the SRMR were
small, SRMR = .040 and SRMR = .035, in the positive and negative gates, respectively.
Additionally, all of the parameter estimates except for the intercept/slope covariances
were dtatisticaly significant (p's < .001). Thus, the log-log linear models provided
adequate descriptions of the logic gate training data and there were sufficient individual
differencesin the intercept and slope estimates to warrant further investigation.

There were also a number of interesting differences among the positive and
negative gates. The mean intercept was lower, 7.7343, SE = .0281, and the mean slope
steeper, -.2268, SE = .0091, in the positive gates than in the negative gates, 8.0319, SE =
0232 and -.1938, SE = .0077, (Based on an interval of £ 2 SE). This indicates that
participants were initially faster and acquired skill at a greater rate in the positive gates.
There were also greater individual differencesin the positive intercept, .0860, SE = .0110,
than in the negative intercept, .0581, SE = .0079. However, the difference in slope
variances was not statistically significant, .0065, SE = .0015, and .0045, SE = .0010. The
estimated reliabilities for the individua blocks ranged form r = .88 to r = .89 in the
positive gates and from r = .87 to r = .90 in the negative gates. Thus, the logic-gate
training task provided reliable measurement in both the positive and negative gates.
Finally, the estimated reliabilities for the true slopes were high, r = .996, for both gate
types. Such a high degree of reliability reflects the efficiency of using eight waves of data
to model change (see, Willett, 1989).

Table 2 Eight-Block Log-Log Linear Logic Gate Baseline Models
Maximum Likelihood Estimates

Parameter Positive Gates Negative Gates
1. Intercept Mean 7.7343*** 8.0319***
2. Slope Mean -.2268*** -.1938***
3. Intercept Variance .0860* ** .0581***
4. Slope Variance .0065*** .0045%**
5. INT/SLP Covariance -.0053" .0002

6. Error 1-8 .0110*** .0087***
7. (df) X2 (38)81.73 (38)66.25

8. Scaled X2 (38)47.54 (38)47.81

9. GFI .868 .889

10. CFI 971 .981

11. SRMR .040 .035

Note: p < .10; ***p < .001; N=119; INT = Intercept; SLP = Slope.

Together, the two baseline models provided an informative description of learning
in the logic gate task. That the form of the learning curve was log-log linear fulfilled a
strong expectation based on the log-log linear law of learning (Newell & Rosenbloom,
1981). This is important because fulfilling the expectation supports the validity of the
measurement models that form the bases of these analyses. There was also a high degree
of individual differences in both the level of performance and rates of change.
Additionally, systematic differences associated with differences in the positive and
negative gates were seen in both the performance levels and rates of change. Overall



performance was higher and the rate of change greater in the positive gates than in the
negative gates. Likewise, the magnitude of individual differences was higher in the
positive gate condition. Both of these findings reflect the added complexity of the
negative gate judgments. The predictor models that follow will determine to what extent
these differences can be accounted for by individual differences in capacity, speed, and
part/whole-training.

Logic Gate Models with Predictors, The predictor models represent the
simultaneous regressions of the true slopes and true intercepts on the predictor variables.
Thus, each coefficient estimates the change in the true slope or true intercept that is
uniquely attributable to a unit change in a given predictor. In this context, creating and
evauating the predictor models was an iterative process of simultaneously evaluating
overall model-fit and seeking the most informative and parsimonious models. Initialy,
models were assessed that included all of the predictor variables and those predictors that
failed to show a significant relationship with either the logic-gate slope or intercept were
dropped from subsequent analyses. The entire process was resolved in two iterations, the
initial models and the final models. In both iterations two models were assessed for both
the positive and negative gates, one that fit the intercept as initial performance level and
one that fit the intercept as fina performance level. Together, these models provided
estimates of initia and final performance levels, the rate of change over the course of
training, and the mediating effects of training method, procedural speed, and working
memory capacity on each of these parameters.

To fully understand the nature of the relationships that were obtained in the
predictor models, it is useful to examine the simple correlations of the predictors with the
true slopes and intercepts. These correlations were derived from the LISREL ETA and
KSI matrices that came from the initial predictor models and are presented in Table 3.
The verbal and spatial PS correlations were similar across the positive and negative gate
conditions, with one difference. Verba PS was significantly correlated with the positive-
gate learning rate and spatial PS was not, whereas spatial PS was significantly correlated
with the negative-gate learning rate and verbal PS was not. Otherwise, neither PS level
indicator correlated with initial positive-gate performance, both were correlated with
positive-gate fina performance, and both correlated with negative-gate initial and final
performance levels. However, when simultaneously regressed in the initidl models,
verbal PS was the only significant PS indicator in the positive-gate condition and spatial
PS was the only significant PS indicator in the negative-gate condition.

Table 3 Correlations of Predictorswith Latent Curve Slopes and | ntercepts

Predictor/Parameter Early Positive Late Positive Early Negative Late Negative
1. SPPS/INT .159 .248** .245%* 314%**
2. SPPSSLP 170 -- .208* --

3. VB PS/INT .146 .256** .184* .232*
4,VB PS/SLP .207* -- .149 --

5. SPWM/INT -.307*** -.200* -.262%* -.202*
6. SPWM/SLP 175* -- .047 --
7.VB WM/INT -.364%** -.244%* -.332%** -.264**
8. VB WM/SLP .195* -- .043 --

9. Group/INT .292%* .528*** 323 ** 512%**
10. Group/SLP Q43 A468*** --

Note: *p <.05; **p < .01; ***p <.001; N = 119; Note: *p < .05; **p < .01; ***p < .001; SP = Spatia; VB
= Verbal; PS = Procedural Speed Level; WM = Working Memory; INT = Intercept; SLP = Slope.
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Given the simple correlations, which showed both PS indicators significantly
correlated with performance in both the positive and negative gates, these findings show
the combined effects of multicollinearity and the differential weightings of the PS
variables in the positive and negative gates. Though these differences may simply be
artifactual, the differences in weightings across gate types and verbal and visuospatial
priming suggest possible differences in processing. It may be that the positive-gates were
a more straightforward verbal/logical task, requiring verbal mediation, whereas the
negative gates with the added visual feature of the negation node (see, Figure 1) and the
possible use of an added representational dimension for negation, caused participants to
rely on visuospatia representations. This would be similar to performance differences
that have been observed in simple digit-span tasks where the digit-span forward is seen as
the product of ssimple verba attention and the backwards digit-span is associated with
visual imagery (Weinberg, Diller, Gerstman, & Schulman, 1972). Overal, this supports
some degree of specialization within the PS domains.

The simple correlations of the verbal and spatial WM variables were almost
identical across the positive and negative gate conditions, with the verbal WM
correlations being of dightly greater magnitude. However, in the initia growth curve
models verbal WM was the only statistically significant predictor. Thus, spatial WM also
succumbed to multicollinearity and the dlightly greater weightings of verbal WM in
logic-gate performance. These results suggest that though the factor analysis of WM
resulted in two factors, the functional aspect of WM related to learning in the logic-gate
training task is unitary and weighted towards the verbal domain.

Training group was the most influential and only variable to consistently correlate
with both the true slope and true intercept across all conditions. Training group was also a
significant predictor in all of the growth curve models. Consequently, training group was
maintained as a predictor in al of the final models, as was verba WM. PS was
represented by verbal speed level in the positive gate models and by spatial speed level in
the negative gate models. Finally, spatial WM was dropped as a predictor from all of the
models.

The predictor coefficients, R? estimates for the true slopes and intercepts, and
overall model-fit statistics for the final models are presented in Table 4. The coefficients
are in rows 1 through 8, the R? estimates in rows 9 and 10, and the model-fit statistics in
rows 11 through 15. Two sets of models were evaluated, one that estimated the intercept
as initial performance level and a second estimating the intercept as final performance
level. Coefficients and R? estimates for both sets of intercepts are provided. However,
fitting the intercept as endpoint, did not affect either the overall model fit, slope
estimates, or the slope/predictor relationships. Accordingly, these estimates are not
repeated.

As in the baseline models, the discrepancies among the minimum-fit and Scaled
chi-sguare statistics and the GFI and CFlI model-fit indicators show the deviation from
multivariate normality. The Scaled chi-square for the negative-gate model was small for
its degrees of freedom, X2 (56) = 69.49, and the Scaled chi-square statistic for the
positive-gate model was only slightly large, X2 (56) = 77.85. The CFI were large for both
the positive and negative gate models, CFl = .962 and CFl = .978, respectively, and the
SRMR were small, SRMR = .036 and SRMR = .032. Altogether, this shows that the log-
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log linear model and the hypothesized relationships of capacity, speed, and training group
combined to produce an adequate account of the overall covariance structure.

Table4 Log-Log Linear Logic-Gate Training Modelswith Predictors
Maximum Likelihood Estimates

Predictor/Parameter Initial Pos. Final Pos. Initial Neg. Fina Neg.
1. VB PSL/INT .0397 .0815*** -- --
2.VB PSL/SLP .0201** -- -- --

3. SPPSL/INT -- -- .0484* 0722%**
4, SPPSL/SLP -- -- .0115

5.VB WM/INT -.1025* ** -.0652** -.0762%** -.0680**
6. VB WM/SLP .0179* -- .0040 --

7. Group/INT .0861*** .1635*** .0724*** .1360%**
8. Group/SLP .0372*** -- .0306* ** --

9. RYInt 233 ** A06*** 251%** .304%**
10. R¥/SLP 299%** -- .250%** --

1 (afy X2 (56)115.95 -- (56)91.01 --

19 Sealed X2 (56)77.85 -- (56)69.49 --

13. GFl .859 -- .891 --

14. CFI .962 -- .978 --

15. SRMR .036 -- .032 --

Note: 'p <.10; *p < .05; **p < .01; ***p < .001; N=119; VB= Verbal; SP = Spatia; PSL = Procedural
Speed; WM = Working Memory; INT = Intercept; SLP = Slope.

All of the coefficient estimates were in their predicted directions and all of the
coefficients except the VB PS\ INT coefficient in the initial positive-gate model and the
SP PS\SLP and VB WM\SLP coefficients in the initial negative gate model were
statistically significant (p's < .05). That the PS\INT coefficient in the initial model was
not statistically significant and became so in the later model is consistent with the
hypothesis of PS having less effect early in skill and increasing over the course of
learning. However, that the initial WM\SLP coefficient in the negative gate condition was
not statisticaly significant is at least somewhat enigmatic. One would think that
individual differences in WM capacity would be more influential in the more difficult
negative-gate condition. One likely explanation is that performance in the negative-gate
condition became capacity-limited for some participants, which censored the lower end
of the WM distribution and attenuated the effect. The initial negative-gate WM/INT
coefficient, which was datistically significant, was aso attenuated relative to the
positive-gate condition, giving additional support to the hypothesis that the WM effect
was attenuated due to capacity limitations.

Interestingly, the negative-gate PS/INT coefficient was enhanced relative to the
positive-gate condition, suggesting that procedural speed becomes more influential in
performance levels as the effect of WM becomes limited. However, the lack of a
significant PS\SLP predictor relationship in the negative gate condition is somewhat
puzzling. The simple spatial PS\SLP correlation was statistically significant (see, Table
11). For the predictor relationship in the simultaneous regression not to be significant
suggests that somehow the simultaneous regression with verbal WM and training group
attenuated the relationship.

Altogether, the predictor effects showed that the participants with greater working
memory capacity, who were faster in terms of procedura speed, and who received single-
gate training were more efficient in computing digital logic gates, and even more
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important, they learned at a faster rate. Across the positive- and negative-gate models the
combined predictors accounted for approximately 25% of the variance in initial
performance levels and rates of change. Over the course of training the predictors came
to account for approximately 40% of the variance in performance levels. Thus,
performance levels became more predictable with training. Also over training, the
proportion of variance accounted for by procedural memory and training method
increased, whereas the proportion of variance accounted for by working memory
decreased. Altogether, the pattern of relationships among the predictors and the training
data are consistent with most theoretical accounts of skill learning and support the
hypothesized relationship of repetition priming and procedural memory processes.

Finally, by sequentially entering the predictors into the models ordered by R it
was possible to obtain estimates of Cohen’s (1988) f 2 effect size (ES) indicator for each
predictor. The ES indices for each of the predictor relationships in the logic-gate training
models are presented in Table 5. Although the labels are descriptive and approximate,
Cohen (1988) characterized f 2 estimates of .02, .15, and .35 as being small, medium, and
large relative to the effects commonly observed in psychological research. As predicted,
the effect of WM on true intercept decreased from initial performance to final
performance. In both the positive and negative gate models the WM ES was effectively
halved, decreasing from a medium ES to a small ES. Also as predicted, the effect of PS
on true intercept increased from initial to final performance. The PS ES increased seven-
fold in the positive gate models and more than doubled in the negative gate models.
Though the PS ES estimates continued to be small, the magnitude of the increases was
large. Overall, training group had the largest and most cumulative effect on performance
levels with participants in the single-gate training group performing both initially and
increasingly faster. Training group was also the most influential variable affecting true
slopes. It should be noted that on the fourth day of this study, which is not dealt with in
this paper, the two training groups performed equivalently in an environment that was
identical to the whole-training environment, that is, in terms of mean performance levels.
However, individual differences analyses suggested that performance in the single-gate
training group was less dependent on working memory capacity.

Table5 Predictor Effect-Size Estimates

Positive Gates Negative Gates

Parameter Initial Level Final Level Initial Level Final Level
1. VB PS/INT .02 14 - -

2. VB PS/SLP .09 - - -

3. SPPY/INT - - .05 12

4. SPPS/SLP - - .04 -

5. VB WM/INT A7 .08 14 .09

6. VB WM/SLP .06 - .00 -

7. Group/Int A1 A7 A4 43

8. Group/SLP .28 .29

Note: PS = Procedura Speed; WM = Working Memory; INT = Intercept; SLP = Slope.
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Conclusions

Overdll, the results of the latent growth curve models supported the hypothesized
account of the dynamics of cognitive skill acquisition. As predicted, the models showed
initially high working memory loadings followed by decreased working memory and
increased procedural memory loadings. Additionally, the models showed that repetition
priming is a multi-episodic phenomenon that takes the log-log linear form, and is
systematically related to developing skill in a manner consistent with its role as an
indicator of procedural memory processing. The models also showed that while the
structure obtained in the working memory factor analyses was a domain-specific
correlated two-factor solution, the functional aspect of working memory in skill learning
is a unitary factor. This is consistent with contemporary accounts of working memory
capacity that clam it is a unitary construct with characteristics similar to the
psychometric construct of general fluid intelligence (e.g. Engle, Kane, & Tuholski, 1999;
Engle, Tuholski, Laughlin, & Conway, 1999; Kyllonen, & Christal, 1990; Law, Morrin,
& Pellegrino, 1995).

It is hoped that the use of these models demonstrates the utility of assessing
change, especialy in evauations of learning, and will encourage other researchers to
include similar evaluations in their research. Simultaneously assessing the change
function and individual differences predictors of change provides awealth of information
not readily available in two-wave data analyses or standard means differences analyses. It
allows for an evaluation of the convergence of a complex pattern of results, providing a
more thorough test of theoretical predictions. Finally, though this methodology was not
conceived of at the time, and in many ways is still in development, | hope this research
exemplifies the kind of study envisioned by Cronbach (1957) in his historic and yet to be
realized call for the integration of the two disciplines of scientific psychology.
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